Hydrogen bond topology and the ice VII/VIII and Ih/XI proton ordering phase transitions.

نویسندگان

  • Chris Knight
  • Sherwin J Singer
  • Jer-Lai Kuo
  • Tomas K Hirsch
  • Lars Ojamäe
  • Michael L Klein
چکیده

Ice Ih, ordinary ice at atmospheric pressure, is a proton-disordered crystal that when cooled under special conditions is believed to transform to ferroelectric proton-ordered ice XI, but this transformation is still subject to controversy. Ice VII, also proton disordered throughout its region of stability, transforms to proton-ordered ice VIII upon cooling. In contrast to the ice Ih/XI transition, the VII/VIII transition and the crystal structure of ice VIII are well characterized. In order to shed some light on the ice Ih proton ordering transition, we present the results of periodic electronic density functional theory calculations and statistical simulations. We are able to describe the small energy differences among the innumerable H-bond configurations possible in a large simulation cell by using an analytic theory to extrapolate from electronic DFT calculations on small unit cells to cells large enough to approximate the thermodynamic limit. We first validate our methods by comparing our predictions to the well-characterized ice VII/VIII proton ordering transition, finding agreement with respect to both the transition temperature and structure of the low-temperature phase. For ice Ih, our results indicate that a proton-ordered phase is attainable at low temperatures, the structure of which is in agreement with the experimentally proposed ferroelectric structure. The predicted transition temperature of is in qualitative agreement with the observed transition at on KOH-doped ice samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The low-temperature proton-ordered phases of ice predicted by ab initio methods.

The low-temperature proton-ordered counterparts for ice-Ih, ice-III, ice-VI and ice-VII are investigated by first principle methods in conjunction with a graph enumeration technique. Two experimentally well calibrated disorder/order transitions, ice-Ih/ice-XI and ice-VII/ice-VIII, are used to validate the methodology we used herein and in both cases our approach is able to reproduce major exper...

متن کامل

Correlated Tunneling in Hydrogen Bonds

We study the quantum nature of the protons participating in hydrogen bonds in several ice structures by analyzing the one particle density matrix. We find that in all cases, including ice Ih, the most common form of ice, and the high pressure phases, ice VIII, VII, and X, the system is ground-state dominated. However, while the dynamics is uncorrelated in the structures with standard asymmetric...

متن کامل

Assessment of density functional theory to calculate the phase transition pressure of ice.

To assess the accuracy of density functional theory (DFT) methods in describing hydrogen bonding in condensed phases, we benchmarked their performance in describing phase transitions among different phases of ice. We performed DFT calculations of ice for phases Ih, II, III, VI and VII using BLYP, PW91, PBE, PBE-D, PBEsol, B3LYP, PBE0, and PBE0-D, and compared the calculated phase transition pre...

متن کامل

Raman and IR Spectra of Ice Ih and Ice XI with an Assessment of DFT Methods.

IR and Raman spectroscopic technology can be directly used to identify the occurrence of ferroelectric ice XI in laboratory or extraterrestrial settings. The performance of 16 different DFT methods applied on the ice Ih, VIII, IX, and XI crystal phases are evaluated. Based on a selected DFT computational scheme, the IR and Raman spectra of ice Ih and XI are derived and compared. When comparing ...

متن کامل

Effect of salt on the H-bond symmetrization in ice.

The richness of the phase diagram of water reduces drastically at very high pressures where only two molecular phases, proton-disordered ice VII and proton-ordered ice VIII, are known. Both phases transform to the centered hydrogen bond atomic phase ice X above about 60 GPa, i.e., at pressures experienced in the interior of large ice bodies in the universe, such as Saturn and Neptune, where non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005